Table 6. Sea turtle takes/mortalities per year in minor gear modification experiment, with significant (50% effective*) loggerhead findings in 1 year. Mortalities are included in the takes. | (| | | / 88 | | O C. J C. J | | | | | | |--------------|-------------|-------------|--|--------------|-----------------------------------|-------|---------------|--------------|---------------|--------------| | 10.00 | | | The state of s | | Concomitant takes (other species) | | | | | | | Error Levels | | <u>Sets</u> | Loggerheads | | <u>Leatherbacks</u> | | Olive ridleys | | <u>Greens</u> | | | Alpha | <u>Beta</u> | | <u>Takes</u> | <u>Morts</u> | <u>Takes</u> | Morts | <u>Takes</u> | <u>Morts</u> | <u>Takes</u> | <u>Morts</u> | | 0.05 | 0.10 | 981 | 61 | 22 | 12 | 4 | 6 | 2 | 4 | 1 | ^{*}treatment reduces leatherback take by 50% compared with control # 2.5 <u>Description of Alternative 5 - Issue the permit without the stealth gear and deep-set daytime fishing CPUE</u> Under this alternative all of the permit methodologies described in the Proposed Alternative 2 would be included except for the testing "stealth gear" and deep-set daytime fishing for CPUE viability (2.2 B). This alternative is not the preferred because testing major gear modifications for target species CPUE is a critical first step in determining the feasibility of implementing these modifications in the fishery. Modifications to gear or fishing practices that result in extremely low catch of the intended target species likely would not be used by the industry. The loss in revenue from the decrease in catch may not cover the cost of the operation. Tests conducted on the efficacy of stealth fishing gear and daytime deep sets to reduce sea turtle interactions without first determining target species CPUE would result in unnecessary turtle takes. Eliminating the stealth fishing gear and deep-set daytime for target CPUE would delay testing for these potential turtle bycatch reduction methods. These potential methods are our best hope for reducing bycatch if the minor gear modification experiments are determined not to be effective after the first year of the experiment. #### 3.0 Affected Environment #### 3.1 Introduction The affected environment is the Pacific Ocean for swordfish and tuna managed under the PFMP. # 3.2 Physical Resource Issues The physical environment of the Pacific ocean north of Hawaii is oceanic and pelagic in nature. The affected environment is all the areas that will be affected directly or indirectly by the domestic Hawai'i-based longline fishery for swordfish and tuna managed under the Pelagics Fishery Management Plan. The Hawai'i longline fishery operates inside and outside of the main Hawaiian islands' and Northwestern Hawaiian Islands' EEZ (see Figure 1). Hawai'i-based longline vessels vary their fishing grounds depending on their target species. Most effort is to the north and south of the Hawaiian Islands between latitudes 5° and 40° N and longitudes 140° and 180° W. Figure 2 shows the maximum historical boundaries of the Hawai'i-based longline fishery using 5° increments. A complete description of the affected environment is incorporated by reference in Chapter 3 of the Final Environmental Impact Statement for the Fishery Management Plan: Pelagics Fisheries of the Pacific Region dated March 1, 2001 (NMFS, 2001a). # 3.3 <u>Biological Resource Issues</u> Pelagic longline fisheries encounter many species of fish; some of those captured are marketable and thus are retained, others are discarded for economic or regulatory reasons. Species frequently encountered are swordfish, tunas, and sharks, as well as billfish, dolphin, wahoo, king mackerel, and other finfish species. Detailed descriptions of the life histories and population status of these species are given in the PFMP and the EIS prepared on that fishery and are not repeated here. The status of the stocks of Pacific swordfish and tunas, are summarized in chapter 2 of the 2001 SAFE Report (NMFS 2001b), and are not repeated here. Sometimes pelagic longline fisheries also catch sea turtles, marine mammals and sea birds known collectively as "protected" species. All of these species are Federally protected and managed, and NMFS seeks to control the mortality that results from fishing effort. Detailed descriptions of life histories and population status of marine mammals and sea birds known to interact with pelagic longline gear is detailed in the PFMP, the March 29, 2001 opinion and is not repeated here. Although blue whales, fin whales, northern right whales, and sei whales are found within the action area and could potentially interact with the longline vessels involved in the experiment, there have been no reported or observed incidental takes of these species in the Hawaii-based longline fisheries. In 1991, one humpback was reported by an observer entangled in the mainline of a Hawaii-based longline vessel. The animal was released with trailing gear (Dollar, 1991). The interaction occurred inside what is now the protected species zone (50 nautical miles) of the islands and atolls of the Northwestern Hawaiian Islands (Bob Harman, NMFS, personal communication, November, 2000). Another humpback whale was reported entangled in longline gear off Lanai (Nitta and Henderson, 1993) and by whalewatch operators off Maui in 1993 (Hill and DeMaster, 1999). Confirmation was not made as to whether the gear type was pelagic longline gear, and it is believed to be the same whale. Humpback whales favor waters less than 100 fathoms (183 meters) around the main Hawaiian Islands. The highest densities of humpback whales occur in the shallow-water, inter-island channels of the four-island region (Maui, Lāna'i, Moloka'i, and Kaho'olawe) and Penguin Bank (Hudnall, 1978, Baker and Herman, 1981, Mobley and Bauer, 1991 *in* Mazzuca *et al.*, 1998). The 1991 interaction occurred inside the 50 nautical mile area now closed to longline fishing, and vessels fishing under the scientific research permit will be fishing far north of where humpbacks are normally concentrated. Therefore, NMFS considers the likelihood of an interaction to be very low, and does not expect that longliners fishing under the scientific research permit will interact with a humpback whale. NMFS has observed one sperm whale interaction by the Hawaii-based longline fishery. The event occurred in May, 1999 inside the Northwestern Hawaiian Islands EEZ (about 140 nautical miles north of Raita Bank), and the vessel was targeting swordfish (gear was set at night, lightsticks were used, and no line shooter was used). According to the observer report, the sperm whale's pectoral fin was entangled in the mainline. The captain stopped the boat, let out more mainline, and then backed up until he could reach the other end of the mainline. At this point, both ends of the mainline, on each side of the sperm whale, were secured on the vessel. During this time, the whale broke the mainline and swam away without trailing gear. This is the first reported interaction by the observer program since the Hawaii-based longline fleet has been monitored (1991). In addition, there have been no reported sperm whale interactions by fishers in their logbook submissions. NMFS has observed 3,251 sets, representing approximately 3,874,635 hooks (data from February 1994 through December 31, 1999), since the implementation of the mandatory observer program. Based on this information, the observed entanglement rate for sperm whales would equal approximately 0.31 whales per 1,000 sets. However, with only one sperm whale entanglement, NMFS believes that this estimated entanglement rate does not represent the actual entanglement rate. One whale entanglement cannot provide a reliable estimate of the true entanglement rate with any certainty. At this time, there is insufficient data to suggest that a sperm whale interaction with longline gear is anything more than a
one time random event. Nevertheless, NMFS recognizes the potential that sperm whales could interact with longline gear set in the open water but without more accurate data is unable to predict with any level of confidence the likelihood of an interaction. Therefore, without additional information to support the frequency of entanglements, NMFS does not anticipate that there will be a sperm whale interaction in the foreseeable future by longliners fishing under the scientific research permit. The endangered Hawaiian monk seal is currently found throughout the NWHI, specifically: Kure Atoll, Midway Islands, Pearl and Hermes Reef, Lisianki Island, Laysan Island, French Frigate Shoals, Gardner Pinnacles, Necker Island and Nihoa Island. These islands form a chain approximately 1,840 km long. Hawaiian monk seals are also occasionally found in the main Hawaiian Islands. The longline area closure around the NWHI instituted in 1991 (longline fishing prohibited within 50 nm of the NWHI and in 100 nm closed corridors connecting the non-contiguous closed circles) appears to have eliminated monk seal interactions with the Hawaii-based longline fleet, as there have been no observed or reported interactions with this fishery since then. Although hawksbill turtles are known to nest on the Main Hawaiian Islands (Molokai and Hawaii), they are not known to interact with the Hawaii-based longline fishery, as there have been no reported or observed interactions between these pelagic longliners and hawksbills. As hawksbills become adults, evidence suggests that they switch foraging behaviors from pelagic surface feeding to benthic reef feeding. The maturing turtle establishes foraging territory and will remain in this territory until it is displaced. If Hawaiian hawksbills forage close to their known nesting sites, they are probably benefitting from the protected species zone instituted by the Council in 1991, where longliners are prohibited from fishing within 50 nm of the NWHI and within 100 nm closed corridors connecting the non-contiguous closed circles. Further longline exclusion zones prohibit longline fishing in specific areas around the MHI (depending on the time of year and location, the exclusion zones around the MHI range from 25-75 nm). Because adult hawksbills are most likely foraging primarily in nearshore waters, and the majority of the experiments will take place north of 28°N, the likelihood of an interaction with a longliner fishing under the scientific research permit is very low. ### 3.3.1 Short-tailed Albatross In the March 30, 2001, EIS NMFS stated that the short-tailed albatross has been shown to be extremely vulnerable to longline fisheries worldwide. NMFS initiated consultation with the United States Fish and Wildlife Service (FWS) on April 29, 2000 concerning effects of the Hawaii-based longline fishery on the short-tailed albatross. On November 20, 2000, FWS released its biological opinion on the effects of the fishery on the albatross. The November 20, 2000 opinion concluded that the level of take in the Hawaii longline fishery is not likely to jeopardize the continued existence of the short-tailed albatross, but did specify a number of reasonable and prudent measures to be implemented by the fleet to minimize and monitor takes and to ensure survivability of any injured birds (NMFS, 2001a). On December 12, 2001, FWS issued a biological opinion on the effects on the short-tailed albatross (*Phoebastria albatrus*) of the proposed NMFS longline research permit activities. The December 12, 2001 biological opinion concluded that the proposed permit activities would not likely jeopardize the continued existence of the short-tailed albatross. ## Species Description George Steller provided the first record of the short-tailed albatross in the 1740s. The type specimen for the species was collected offshore of Kamchatka, Russia, and was described in 1769 by P.S. Pallas in Specilegia Zoological (AOU 1998). In the order of tubenose marine birds, Procellariiformes, the short-tailed albatross is classified within the family Diomedeidae. Until recently, it was assigned to the genus *Diomedea*. Following results of the genetic studies by Nunn *et al.* (1996), the family Diomedeidae was arranged in four genera. The genus *Phoebastria*, North Pacific albatrosses, now includes the short-tailed albatross, the Laysan albatross (*P. immutabilis*), the black-footed albatross (*P. nigripes*), and the waved albatross (*P. irrorata*) (AOU 1998). The short-tailed albatross is a large pelagic bird with long narrow wings adapted for soaring just above the water surface. The bill is disproportionately large compared to other northern hemisphere albatrosses; it is pink and hooked with a bluish tip, has external tubular nostrils, and has a thin but conspicuous black line extending around the base. Adult short-tailed albatrosses are the only northern Pacific albatross with an entirely white back. The white head develops a yellow-gold crown and nape over several years. Newly fledged birds are dark brown-black, but soon obtain pale bills and legs that distinguish them from black-footed albatross (Tuck 1978, Robertson 1980). Subadult birds have mixed white and brown-black areas of plumage, gradually getting more white feathers at each molt until reaching fully mature plumage. # Life History Available evidence from historical accounts and from current breeding sites indicates that short-tailed albatross nesting habitat is characterized by flat or sloped sites with sparse or full vegetation on isolated windswept offshore islands with restricted human access (Arnoff 1960, Sherburne 1993, DeGange 1981). Current nesting habitat on Torishima Island is steep sites on soil containing loose volcanic ash; the island is dominated by a grass, *Miscanthus sinensis* var. *condensatus*, but a composite, *Chrysanthemum pacificum*, and a nettle, *Boehmeria biloba*, are also present (Hasegawa 1977). The grass probably stabilizes the soil, provides protection from weather, and minimizes mutual interference between nesting pairs while allowing for safe, open take-offs and landings (Hasegawa 1978). The nest is a grass or moss-lined concave scoop about 2 ft (0.75 m) in diameter (Tickell 1975). Short-tailed albatrosses are long-lived and slow to mature; the average age at first breeding is about 6 years (Service 1999). As many as 25 percent of breeding age adults may not return to the colony in a given year (Service 1999; Cochrane and Starfield, in press). Females lay a single egg each year, which is not replaced if destroyed (Austin 1949). Adult and juvenile survival rates are high (96 percent), and an average of 0.24 chicks per adult bird in the colony survive to fledge at six months of age (Cochrane and Starfield, in press.). However, chick survival can be reduced severely in years when catastrophic volcanic or weather events occur during the breeding season. At Torishima, birds arrive at the breeding colony in October and begin nest building. Egglaying begins in late October and continues through late November. The female lays a single egg; incubation involves both parents and lasts for 64-65 days. Eggs hatch in late December and January, and by late May or early June the chicks are almost fully grown and the adults begin abandoning their nests (Service 1999; Hasegawa and DeGange 1982). The only known currently active breeding colonies of short-tailed albatross are on Torishima and Minami-kojima islands, Japan. The chicks fledge soon after the adults leave the colony, and by mid-July, the colony is deserted (Austin 1949). Non-breeders and failed breeders disperse from the breeding colony in late winter through spring (Hasegawa and DeGange 1982). There is no detailed information on phenology on Minami-kojima, but it is believed to be similar to that on Torishima. Short-tailed albatrosses are monogamous and highly philopatric to breeding sites. Chicks hatched at Torishima return there to breed. However, young birds may occasionally disperse from their natal colonies to breed, as evidenced by the appearance of adult birds displaying courtship behavior on Midway Atoll that were banded as chicks on Torishima (Service 1999, Richardson 1994). The diet of short-tailed albatrosses includes squid, fish, flying fish eggs, shrimp and other crustaceans (Hattori in Austin 1949, Service 1999). There is currently no information on variation of diet by season, habitat, or environmental condition. # Population Dynamics Breeding-age population estimates come primarily from egg counts and breeding bird observations. There were 440 breeding adults present at the beginning of the 1999-2000 breeding season on Torishima, assuming 2 adults are present for each of the 220 eggs counted (H. Hasegawa, pers. commun. 2000). The most recent population estimate on Minami-kojima is 25 breeding pairs, or 50 breeding adults. Therefore, the unadjusted total worldwide estimate is 490. It has been noted that an average of approximately 25 percent of breeding adults may not return to breed each year. It is reasonable, therefore, to estimate that approximately 122 additional breeding-aged birds may not be observed on the breeding grounds. Therefore, 612 birds is the adjusted worldwide estimate of breeding age birds. Numbers of immature birds are more difficult to estimate because these individuals do not congregate between fledgling and returning to breed at approximately 6 years of age. An estimate can be calculated by totaling the number of known fledged chicks in the last 6 years, and the average juvenile survival rate of 96 percent (Service 1999; Cochrane and Starfield, in press). Dr. Hiroshi Hasegawa of Toho University, Japan, reported that 655 chicks were fledged from the Tsubamesaki colony on Torishima between 1994 and 2000 (H. Hasegawa, pers. commun. 2000). Based on an average juvenile survival rate of 96 percent, there are an estimated 629 birds in the immature population from Torishima
Island. In 1998, Hasegawa estimated the total population at Minami-kojima to be 150 birds, containing an estimate of 100 immature birds. Combining the estimated number of immature birds from Torishima Island and the estimated number of immature birds from Minami-kojima yields a worldwide immature population estimate of about 729 individuals (based on data through the 1999-2000 breeding season at Torishima and 1997-98 breeding season at Minami-kojima). The estimated world population of short-tailed albatrosses, calculated by combining estimated breeding age birds (612) and estimated immature birds (about 750), is therefore about 1,362 birds. No measures of uncertainty are available for this estimate. Distribution and Population Status The species once ranged throughout most of the North Pacific Ocean and Bering Sea, with known nesting colonies on numerous western Pacific Islands in Japan and Taiwan (Hasegawa 1979, King 1981). Though other undocumented nesting colonies may have existed, there is no conclusive proof that short-tailed albatross once nested at locations beyond the Japanese and Taiwanese colonies. Short-tailed albatross courtship behavior and reproductive activities have been observed at Midway Atoll NWR. The question of the future potential of Midway Atoll NWR to serve as a successful nesting colony, through either natural colonization or propagation efforts, remains unknown (Service 1999). At the beginning of the 20th century, the species declined in population numbers to near extinction, primarily as a result of hunting at breeding colonies in Japan. Albatross were killed for their feathers and various other body parts. The feathers were used for writing quills, their bodies were processed for fertilizer, their fat was rendered, and their eggs were collected for food (Austin 1949). Hattori (in Austin 1949) commented that short-tailed albatrosses were "...killed by striking them on the head with a club, and it is not difficult for a man to kill between 100 and 200 birds daily." He also noted that the birds were "very rich in fat, each bird yielding over a pint." Pre-exploration worldwide population estimates of short-tailed albatrosses are not known; the total number of birds harvested may provide the best estimate, as the harvest drove the species nearly to extinction. Between approximately 1885 and 1903, an estimated 5 million short-tailed albatrosses were harvested from the breeding colony on Torishima (Yamashina in Austin 1949), and harvest continued until the early 1930s, except for a few years following the 1903 volcanic eruption. One of the residents on the island, a schoolteacher, reported 3,000 albatrosses killed in December 1932 and January 1933. Yamashina (in Austin 1949) stated that "This last great slaughter was undoubtedly perpetrated by the inhabitants in anticipation of the island's soon becoming a bird sanctuary." By 1949, there were no short-tailed albatrosses breeding at any of the historically known breeding sites, including Torishima, and the species was thought to be extinct (Austin 1949). In 1950, the chief of the weather station at Torishima, M. Yamamoto, reported nesting of the short-tailed albatross (Tickell 1973, 1975), and by 1954 there were 25 birds and at least 6 breeding pairs present on Torishima (Ono 1955). These were presumably juvenile birds that had been wandering the northern Pacific during the final several years of slaughter. Since then, as a result of habitat management projects, stringent protection, and the absence of any significant volcanic eruption events, the population has gradually increased. The average growth of the colony on Torishima Island (the colony is called "Tsubamesaki") between 1950 and 1977 was 2.5 adults per year; between 1978 and 1991 the average population growth was 11 adults per year. An average annual population growth of at least 6 percent per year (Hasegawa 1982; Cochrane and Starfield, in press) has resulted in a continuing increase in the breeding population to an estimated 440 breeding birds on Torishima in 1999 (Service 1999). Torishima Island is under Japanese government ownership and management and is managed for the conservation of wildlife. There is no evidence that the breeding population on Torishima is nest site-limited at this point; therefore, ongoing management efforts focus on maintaining high rates of breeding success. Two management projects have been undertaken to enhance breeding success on Torishima. First, erosion control efforts at the Tsubamesaki colony have improved nesting success. Second, there are continuing attempts to establish a second breeding colony on Torishima by luring breeding birds to the opposite side of the island from the Tsubamesaki colony through the use of decoys and recorded colony sounds. Preliminary results of this experiment are promising; the first chick was fledged from this site in 1997. The expectation is that, absent a volcanic eruption or some other catastrophic event, the population on Torishima will continue to grow, and it will be many years before the breeding sites are limited (Service 1999). In 1971, 12 adult short-tailed albatrosses were discovered on Minami-kojima in the Senkaku Islands, one of the former breeding colony sites (Hasegawa 1984). Aerial surveys in 1979 and 1980 resulted in observations of between 16 and 35 adults. In April 1988, the first confirmed chicks on Minami-kojima were observed, and in March 1991, 10 chicks were observed. In 1991, the estimate for the population on Minami-kojima was 75 birds, including 15 breeding pairs (Hasegawa 1991). At-sea sightings since the 1940s indicate that the short-tailed albatross, while very few in number today, is distributed widely throughout its historical foraging range of the temperate and subarctic North Pacific Ocean (Sanger 1972; Service unpublished data) and is found close to the U.S. west coast. Recent satellite tracking of black-footed and Laysan albatrosses revealed that individuals of these species travel hundreds of miles from breeding colonies during the breeding season (Service 1999). If short-tailed albatrosses are similar in behavior to black-footed and Laysan albatrosses, short-tailed albatross foraging trips may extend hundreds of miles or more from colony sites. In summer (i.e., non-breeding season), individuals appear to disperse widely throughout the historical range of the temperate and subarctic North Pacific Ocean (Sanger 1972), with observations concentrated in the northern Gulf of Alaska, Aleutian Islands, and Bering Sea (McDermond and Morgan 1993; Sherburne 1993; Service unpublished data). Individuals have been recorded along the west coast of North America as far south as the Baja Peninsula, Mexico (Palmer 1962). Short-tailed albatrosses have been observed on Midway Atoll since the early 1930s (Berger 1972, Hadden 1941, Fisher in Tickell 1973, Robbins in Hasegawa and DeGange 1982). There is one unconfirmed report of a short-tailed albatross breeding on Midway in the 1960s (Service 1999), but no subsequent reports of successful breeding exist. In the years following the reported observation, tens of thousands of albatrosses were exterminated from Midway Atoll to construct an aircraft runway for the Department of the Navy, and to provide safe conditions for aircraft landings and departures. It is possible that short-tailed albatrosses on the island could have been killed during this process (Service 1999). Since the mid-1970s, approximately thirty-five sightings of short-tailed albatrosses have occurred during the breeding season on Midway Atoll. In March 1994, a courtship dance was observed between two short-tailed albatrosses (Richardson 1994), and one lone bird has occupied a nest site and laid eggs in 1993, 1995, and 1997, none of which has hatched (Service 1999). A dancing ritual was observed by Service biologists between two short-tailed albatrosses (band numbers 015 yellow and 057 blue) on Sand islet, Midway Atoll, on November 17, 1999. The U.S. Government transferred Midway Atoll from the Navy to the Department of the Interior in 1996, and has designated the Service as the conservation agency to manage Midway Atoll National Wildlife Refuge (NWR). Observations of short-tailed albatross have also been made during the breeding season on Laysan Island, Green Island at Kure Atoll, and French Frigate Shoals, but there is no indication that these occurrences represent breeding attempts (Sekora 1977, Fefer 1989). Between 1976 and 1994, approximately six short-tailed albatross have been sighted from these islands. It is possible that short-tailed albatross could have occurred at these locations during the latter part of the 19th century and first part of the 20th century. If so, they would have been vulnerable to Japanese egg and feather collectors as thousands of black-footed and Laysan albatross were killed to support this trade during this period. In 1909, the Hawaiian Islands Bird Reservation was established by President Theodore Roosevelt (Executive Order 1019) for reasons including the protection of birds and their habitat. On January 23, 2000, a NMFS observer reported seeing a juvenile short-tailed albatross flying near a Hawaii-based longline vessel during haulback of longline gear. The bird was sighted at 0837 hrs., at 33°09'2" north latitude and 147°49'6" west longitude. The bird was flying in a group of about 10-15 black-footed albatrosses and was in sight of the longline vessel for approximately one and one half hours. #### Population Status Between the 1950s and 1970, there were few records of the species away from the breeding grounds, according to the AOU Handbooks of North American Birds (Vol. 1, 1962) and the Red Data Book (Vol. 2, Aves, International Union for the Conservation of Nature, Morges, Switzerland, 1966) (Tramontano 1970). In the northern Pacific, there were 12 reported marine sightings in the 1970s, 55 sightings in the 1980s, and over 250 sightings reported in
the 1990s to date (Sanger 1972; Hasegawa and DeGange 1982, unpublished data). This observed increase in opportunistic sightings should be interpreted cautiously, however, because of the potential temporal, spatial, and numerical biases introduced by opportunistic shipboard observations. Observation effort, total number of vessels present, and location of vessels may have affected the number of observations independent of an increase in total numbers of birds present. The short-tailed albatross is not on the State of Hawaii's list of threatened and endangered species. However, the short-tailed albatross is considered endangered by the State of Alaska (Alaska Statutes, Article 4, Sec.16.20.19). This classification was supported by a letter to Commissioner Noerenberg from J.C. Bartonek, in which he recommended endangered status because the short-tailed albatross occurs, or was likely to occur, in State waters within the 3-nautical mile (5.6-km) limit of State jurisdiction (Sherburne 1993). The Japanese government designated the short-tailed albatross as a protected species in 1958, as a Special National Monument in 1962 (Hasegawa and DeGange 1982), and as a Special Bird for Protection in 1972 (King 1981). Torishima was declared a National Monument in 1965 (King 1981). These designations have resulted in tight restrictions on human activities and disturbance on Torishima (Service 1999). In 1992, the species was classified as "endangered" under the then-newly implemented "Species Preservation Act" in Japan, which makes Federal funds available for conservation programs and requires that a 10-year plan be in place, which sets forth conservation goals for the species. The current Japanese "Short-tailed Albatross Conservation and Management Master Plan" outlines general goals for continuing management and monitoring of the species, and future conservation needs (Environment Agency 1996). The principal management practices used on Torishima are legal protection, habitat enhancement, and population monitoring. Since 1976, Hasegawa has systematically monitored the breeding success and population numbers of short-tailed albatrosses breeding on Torishima. Prior to its current listing as endangered throughout its range, the short-tailed albatross was listed as endangered under the Act, throughout its range, except in the U.S. During this period, the Service considered the short-tailed albatross to be afforded protection under the Act in all portions of its range farther than 3 nautical miles (5.6 km) from U.S. shores, and included those waters of the EEZ (3-200 mi [5.6-370 km] from shore). A final rule was published on July 31, 2000 (65 FR 46643), listing the species as endangered throughout its range. ## 3.3.2 Sea Turtles Based on observed and reported interactions between the Hawaii-based longline fishery (including both swordfish-style, mixed-style, and tuna-style sets) and four species of sea turtles, NMFS has determined that the proposed experiments are likely to adversely affect green, leatherback, loggerhead, and olive ridley turtles. Many sea turtle populations are slow to recover from increased fishing mortality because their reproductive potential is low (late sexual maturation, low juvenile survival). General information about the biology and status of sea turtles can be found in the Recovery Plans for each species (available through the Office of Protected Resources, NMFS); a summary of the status of the loggerhead, leatherback, green and olive ridley sea turtle populations are discussed below. A complete review of the status of each of the four species can be found in the March 29, 2001 Biological Opinion and in the biological opinions drafted on the issuance of this permit. All stocks/populations of sea turtles adversely affected by the proposed action are in decline, except for olive ridleys and Hawaiian green turtles, which appear to be increasing. Impacts to sea turtles in the Pacific Ocean are primarily due to the composite effect of human activities which include: the legal harvest and illegal poaching of adults, immatures, and eggs; incidental capture in fisheries (coastal and high-seas); and loss and degradation of nesting and foraging habitat as a result of coastal development, including predation by domestic dogs and pigs foraging on nesting beaches (associated with human settlement). Increased environmental contaminants (e.g. sewage, industrial discharge) and marine debris, which adversely impact nearshore ecosystems that turtles depend on for food and shelter, including sea grass and coral reef communities, also contribute to the overall decline. While it is generally accepted by turtle biologists and others that these factors are the primary cause of turtle population declines, in many cases there is little quantitative data on the magnitude of human-caused mortality. These four species of sea turtles are highly migratory or have a highly migratory phase in their life history, which makes them susceptible to being incidentally caught by fisheries operating throughout the Pacific Ocean. Because this experiment will take place in an area where the Hawaii-based longline fishery typically fishes, using standard fishing gear and strategy, and using typical longline vessels, this proposed action is anticipated to interact with all four species of sea turtles. In addition to anthropogenic factors, natural threats to the nesting beaches and pelagic-phase turtles such as coastal erosion, seasonal storms, predators, temperature variations, and phenomena such as El Niño also affect the survival and recovery of sea turtle populations. More information on the status of these species along with an assessment of overall impacts are found in this section as well as the Pacific Sea Turtle Recovery Plans (NMFS and USFWS, 1998a-d) and are reviewed extensively in Eckert (1993). ## Loggerhead Sea Turtles The loggerhead turtle is listed as threatened under the ESA throughout its range, primarily due to direct take, incidental capture in various fisheries, and the alteration and destruction of its habitat. The loggerhead is categorized as Endangered, by the IUCN where taxa so classified are considered to be facing a very high risk of extinction in the wild in the near future. Loggerheads are a cosmopolitan species, found in temperate and subtropical waters and inhabiting pelagic waters, continental shelves, bays, estuaries and lagoons. In the Pacific Ocean, major nesting grounds are generally located in temperate and subtropical regions, with scattered nesting in the tropics (*in* NMFS and USFWS, 1998c). The loggerhead is characterized by a reddish brown, bony carapace, with a comparatively large head, up to 25 cm wide in some adults. Adults typically weigh between 80 and 150 kg, with average CCL measurements for adult females worldwide between 95-100 cm CCL (*in* Dodd, 1988) and adult males in Australia averaging around 97 cm CCL (Limpus, 1985, *in* Eckert, 1993). Juveniles found off California and Mexico measured between 20 and 80 cm (average 60 cm) in length (Bartlett, 1989, *in* Eckert, 1993). Skeletochronological age estimates and growth rates were derived from small loggerheads caught in the high-seas driftnet fishery. Loggerheads less than 20 cm were estimated to be 3 years or less, while those greater than 36 cm were estimated to be 6 years or more. Agespecific growth rates for the first 10 years were estimated to be 4.2 cm/year (Zug, *et al.*, 1995). Nesting of loggerheads in the Pacific Basin are restricted to the western and southern region (Japan and Australia, primarily); there are no reported loggerhead nesting sites in the eastern or central Pacific. Upon reaching maturity, adult females migrate long distances from resident foraging grounds to their preferred nesting beaches. The average re-migration interval is between 2.6 and 3.5 years, in Queensland, Australia (*in* NMFS and USFWS, 1998c). Nesting is preceded by offshore courting, and individuals return faithfully to the same nesting area over many years. Clutch size averages 110 to 130 eggs, and one to six clutches of eggs are deposited during the nesting season (Dodd, 1988). Based on skeletochronological and mark-recapture studies, mean age at sexual maturity for loggerheads ranges between 25 to 35 years of age, depending on the stock (*in* Chaloupka and Musick, 1997), although Frazer *et al.* (1994 *in* NMFS and USFWS, 1998c) determined that maturity of loggerheads in Australia occurs between 34.3 and 37.4 years of age. The transition from hatchling to young juvenile occurs in the open sea, and evidence is accumulating that this part of the loggerhead life cycle may involve trans-Pacific developmental migration (Bowen, et al., 1995). The size structure of loggerheads in coastal and nearshore waters of the eastern and western Pacific suggest that Pacific loggerheads have a pelagic stage similar to the Atlantic. This is supported by the fact that the high seas driftnet fishery, which operated in the Central North Pacific in the 1980s and early 1990s, incidentally caught juvenile loggerheads (mostly 40-70 cm in length) (Wetherall, et al., 1993). In addition, large aggregations of mainly juveniles and subadult loggerheads, numbering in the thousands, are found off the southwestern coast of Baja California, over 10,000 km from the nearest significant nesting beaches (Pitman, 1990; Nichols, et al., 2000). Genetic studies have shown these animals originate from Japanese nesting stock (Bowen et al., 1995), and their presence reflects a migration pattern probably related to their feeding habits (Cruz, et al., 1991, in Eckert, 1993). These loggerheads are primarily juveniles, although carapace length measurements indicate that some of them are 10 years old or older. Loggerheads tagged in Mexico and California with flipper and/or satellite transmitters have been monitored returning to Japanese waters (Resendiz, et al., 1998a-b). Tagging programs to study
migration and movement of sea turtles provide evidence that loggerhead turtles are highly migratory and capable of trans-Pacific movement. Satellite telemetry studies show that loggerhead turtles tend to follow 17° and 20°C sea surface isotherms north of the Hawaiian islands (Polovina, et al., 2000; Eckert, unpublished data). Relationships between other turtle species and sea surface temperatures have also been demonstrated, with most species preferring distinct thermal regimes (Stinson, 1984). After capture in the Hawaii-based longline fishery, six satellite transmitter-equipped loggerheads traveled westward along two convergent oceanic fronts, against prevailing currents and associated with a "cool" front characterized by sea surface temperature (17°C), surface chlorophyll and an eastward geostrophic current of about 4 centimeters/second (cm/sec). Three others were associated with a warmer front (20°C), lower chlorophyll levels, and an eastward geostrophic flow of about 7 cm/sec. This study supports a theory that fronts are important juvenile habitat (Polovina, et al., 2000). Genetic analyses of 124 loggerheads caught in the Hawaii-based longline fishery indicated that the majority (nearly 100 percent) originated from Japanese nesting stock (P. Dutton, NMFS, personal communication, January, 2001). Loggerheads are not commonly found in U.S. Pacific waters, and there have been no documented strandings of loggerheads off the Hawaiian Islands in nearly 20 years (1982-1999 stranding data, G. Balazs, NMFS, personal communication, 2000). For their first years of life, loggerheads forage in open ocean pelagic habitats. Both juvenile and subadult loggerheads feed on pelagic crustaceans, mollusks, fish, and algae. The large aggregations of juveniles off Baja California have been observed foraging on dense concentrations of the pelagic red crab, *Pleuronocodes planipes* (Pitman, 1990; Nichols, *et al.*, 2000). Data collected from stomach samples of turtles captured in North Pacific driftnets indicate a diet of gastropods (*Janthina* sp.), heteropods (*Carinaria* sp.), gooseneck barnacles (*Lepas* sp.), pelagic purple snails (*Janthina* sp.), medusae (*Vellela* sp.), and pyrosomas (tunicate zooids). Other common components include fish eggs, amphipods, and plastics (Parker, *et al.*, in press). These loggerheads in the north Pacific are opportunistic feeders that target items floating at or near the surface, and if high densities of prey are present, they will actively forage at depth (Parker, *et al.*, in press). As they age, some loggerheads begin to move into shallower waters, where, as adults, they forage over a variety of benthic hard- and soft-bottom habitats (reviewed *in* Dodd, 1988). Subadults and adults are found in nearshore benthic habitats around southern Japan, in the East China Sea and the South China Sea (e.g. Philippines, Taiwan, and Viet Nam). Studies of loggerhead diving behavior indicate varying mean depths and surface intervals, depending on whether they were located in shallow coastal areas (short surface intervals) or in deeper, offshore areas (longer surface intervals). Loggerheads appear to spend a longer portion of their dive time on the bottom (or suspended at depth), which may be related to foraging and refuge. Unlike the leatherback, to the loggerhead foraging in the benthos, bottom time may be more important than absolute depth (Eckert, *et al.*, 1989). The maximum recorded dive depth for a post-nesting female was 211-233 meters, while mean dive depths for both a post-nesting female and a subadult were 9-22 meters. Routine dive times for a post-nesting female were between 15 and 30 minutes, and for a subadult, between 19 and 30 minutes (Sakamoto, *et al.*, 1990 *in* Lutcavage and Lutz, 1997). #### Leatherback Sea Turtles The leatherback turtle is listed as endangered under the ESA throughout its global range. Furthermore, the Red List 2000 of the IUCN has classified the leatherback as "critically endangered" due to "an observed, estimated, inferred or suspected reduction of at least 80% over the last 10 years or three generations, whichever is the longer," based on: (a) direct observation; (b) an index of abundance appropriate for the taxon; and (c) actual or potential levels of exploitation. Increases in the number of nesting females have been noted at some sites *in the Atlantic*. The Florida and the U.S. Caribbean nesting populations have been increasing at about 10.3% and 7.5%, respectively, per year since the early 1980's but the magnitude of nesting is much smaller than that along the French Guiana coast (see NMFS SEFSC 2001). The nesting aggregation in French Guiana has been ³Taxa are categorized as critically endangered when they are facing an extremely high risk of extinction in the wild in the immediate future. declining at about 15% per year since 1987. From the period 1979-1986, the number of nests was increasing at about 15% annually. Genetic analyses of leatherbacks to date indicate that within the Atlantic basin significant genetic differences occur among St. Croix, U.S. Virgin Islands, and mainland Caribbean populations (Florida, Costa Rica, Suriname/French Guiana) and between Trinidad and the same mainland populations, (Dutton et al. 1999) leading to the conclusion that there are at least 3 separate subpopulations of leatherbacks in the Atlantic. Much of the genetic diversity is in the relatively small insular subpopulations. The analysis of mitochondrial DNA (mtDNA) indicate that the loss of the nesting populations from the St. Croix region and Trinidad would essentially eliminate most of the detected mtDNA variation throughout the Atlantic (Dutton et al. 1999). The Trinidad nesting population may be at a high risk. An estimated 1,000 mature female leatherback sea turtles are caught annually off of Trinidad and Tobago with mortality estimated to be between 50-95% (Eckert and Lien 1999). To date, no studies have been published on the genetic make-up of pelagic or benthic leatherbacks in the Atlantic. Compared to current knowledge regarding loggerhead populations, the genetic distinctness of leatherback populations is less clear and populations or subpopulations of leatherback sea turtles have not been formally recognized based on genetic studies. The demise of once large populations throughout the Pacific, such as in Malaysia and Mexico. Spotila et al. (1996) estimated the global population of female leatherback turtles to be only 34,500 (confidence limits: 26,200 to 42,900) nesting females; however, the eastern Pacific population has continued to decline since that estimate, leading some researchers to conclude that the leatherback is now on the verge of extinction in the Pacific Ocean (e.g. Spotila, et al., 1996; Spotila, et al., 2000). The loss of the Pacific nesting aggregations in addition to losses of key nesting aggregations in the Atlantic would appreciably reduce population viability buy severely reducing genetic diversity, reproduction, distribution, and numbers. Leatherback turtles are the largest of the marine turtles, with a CCL often exceeding 150 cm and front flippers that are proportionately larger than in other sea turtles and may span 270 cm in an adult (NMFS and USFWS, 1998b). In view of its unusual ecology, the leatherback is morphologically and physiologically distinct from other sea turtles. Its streamlined body, with a smooth, dermis-sheathed carapace and dorso-longitudinal ridges may improve laminar flow of this highly pelagic species. Adult females nesting in Michoacán, Mexico averaged 145 cm CCL (L. Sarti, Universidad Naçional Autonoma de Mexico, unpublished data, *in* NMFS and USFWS, 1998b), while adult female leatherback turtles nesting in eastern Australia averaged 162 cm CCL (Limpus, *et al.*, 1984, *in* NMFS and USFWS, 1998b). Leatherback turtles have the most extensive range of any living reptile and have been reported circumglobally from 71°N to 42°S latitude in the pelagic Pacific and in all other major pelagic ocean habitats (NMFS and USFWS, 1998b). For this reason, however, studies of their abundance, life history and ecology, and pelagic distribution are exceedingly difficult. Similar to the olive ridley turtle, leatherback turtles lead a completely pelagic existence, foraging widely in temperate waters except during the nesting season, when gravid females return to tropical beaches to lay eggs. Males are only rarely observed near nesting areas, and it has been proposed that mating most likely takes place outside of the tropical waters, before females move to their nesting beaches (Eckert and Eckert, 1988). They are highly migratory, exploiting convergence zones and upwelling areas in the open ocean, along continental margins, and in archipelagic waters (Morreale, *et al.*, 1994; Eckert, 1998; Eckert, 1999a). In a single year, a leatherback may swim more than 10,000 kilometers (Eckert, 1998). Recent satellite telemetry studies indicate that adult leatherback turtles follow bathymetric contours over their long pelagic migrations and typically feed on chidarians (jellyfish and siphonophores) and tunicates (pyrosomas and salps), and their commensals, parasites and prey (NMFS and USFWS, 1998b). Because of the low nutritive value of jellyfish and tunicates, it has been estimated that an adult leatherback would need to eat about 50 large jellyfish (equivalent to approximately 200 liters) per day to maintain its nutritional needs (Duron, 1978, in Bjorndal, 1997). Compared to greens and loggerheads, who consume approximately 3-5% of their body weight per day, leatherback turtles may consume perhaps 20-30% of their body weight per day (Davenport and Balazs, 1991). Surface feeding has been reported in U.S. waters, especially off the west coast (Eisenberg and Frazier, 1983), but foraging may also occur at depth. Based on offshore studies of diving by adult females nesting on St. Croix, U.S. Virgin Islands, Eckert et al. (1989) proposed that
observed internesting⁴ dive behavior reflected nocturnal feeding within the deep scattering layer (strata comprised primarily of vertically migrating zooplankton, chiefly siphonophore and salp colonies, as well as medusae). Hartog (1980, in NMFS and USFWS, 1998b) also speculated that foraging may occur at depth, when nematocysts from deep water siphonophores were found in leatherback stomach samples. Davenport (1988, in Davenport and Balazs, 1991) speculated that leatherback turtles may locate pyrosomas at night due to their bioluminescence; however direct evidence is lacking. Leatherback turtles also appear to spend almost the entire portion of each dive traveling to and from maximum depth, suggesting that maximum exploitation of the water column is of paramount importance to the leatherback (Eckert, et al., 1989). Maximum dive depths for post-nesting females in the Carribean have been recorded at 475 meters and over 1,000 meters, with routine dives recorded at between 50 and 84 meters. The maximum dive length recorded for such female leatherback turtles was 37.4 minutes, while routine dives ranged from 4-14.5 minutes (in Lutcavage and Lutz, 1997). A total of six adult female leatherback turtles from Playa Grande, Costa Rica were monitored at sea during their internesting intervals and during the 1995 through 1998 nesting seasons. The turtles dived continuously for the majority of their time at sea, spending 57-68% of their time ⁴Internesting – time spent between laying clutches of eggs during a single nesting season. submerged. Mean dive depth was 19 ± 1 meters and the mean dive duration was 7.4 ± 0.6 minutes (Southwood, et al., 1999). Migrating leatherback turtles also spend a majority of time at sea submerged, and they display a pattern of continual diving (Standora, et al., 1984, in Southwood, et al., 1999). Eckert (1999a) placed transmitters on nine leatherback females nesting at Mexiquillo Beach and recorded dive behavior during the nesting season. The majority of the dives were less than 150 meters depth, although maximum depths ranged from 132 meters to over 750 meters. Although the dive durations varied between individuals, the majority of them made a large proportion of very short dives (less than two minutes), although Eckert speculates that the short duration dives most likely represent surfacing activity after each dives. Excluding these short dives, five of the turtles preferred dive durations greater than 24 minutes, while three others preferred dive durations between 12-16 minutes. On the Pacific coast of Mexico, female leatherback turtles lay an average of 4 clutches per season with clutch size averaging 64 yolked eggs per clutch (García and Sarti, 2000) (each clutch contains a complement of yolkless eggs, sometimes comprising as much as 50 percent of total clutch size, a unique phenomenon among leatherback turtles and some hawksbills (Hirth and Ogren, 1987)). Each clutch is laid within a 9.3 day interval (García and Sarti, 2000). Clutch sizes in Terengganu, Malaysia, and in Pacific Australia were larger, averaging around 85-95 yolked eggs and 83 yolked eggs, respectively (in Eckert, 1993). Females are believed to migrate long distances between foraging and breeding grounds, at intervals of typically two or three years (García and Sarti, 2000). Spotila et al. (2000), found the mean re-nesting interval of females on Playa Grande, Costa Rica to be 3.7 years, while in Mexico, 3 years was the typical reported interval (L. Sarti, personal communication, 2000). In Mexico, the nesting season generally extends from November to February, although some females arrive as early as August (Sarti et al., 1989). In the western Pacific, nesting peaks on Jamursba-Medi Beach (Irian Jaya) from May to August, on War Mon Beach (also Irian Jaya) from November to January (Starbird and Suarez, 1994), in peninsular Malaysia in June and July (Chan and Liew, 1989), and in Queensland, Australia in December and January (Limpus and Riemer, 1984). Migratory routes of leatherback turtles originating from eastern and western Pacific nesting beaches are not entirely known. However, satellite tracking of post-nesting females and genetic analyses of leatherback turtles caught in U.S. Pacific fisheries or stranded on the west coast of the U.S. present some strong insight into at least a portion of their routes and the importance of particular foraging areas. Current data from genetic research suggest that Pacific leatherback stock structure (natal origins) may vary by region. Because leatherback turtles are highly migratory and stocks mix in high seas foraging areas, and based on genetic analyses of samples collected by Hawaii-based longline observers, leatherback turtles inhabiting the action area are comprised of individuals originating from nesting assemblages located south of the equator in Indonesia and in the eastern Pacific along the Americas (e.g., Mexico, Costa Rica) (Dutton, *et al.*, 2000). #### Green Sea Turtles Green turtles are thought to be declining throughout the Pacific Ocean, with the exception of Hawaii, as a direct consequence of a historical combination of overexploitation and habitat loss (Eckert, 1993). The species is listed as threatened under the ESA, except for breeding populations found in Florida and the Pacific coast of Mexico, which are listed as endangered. The International Union for Conservation of Nature and Natural Resources (IUCN) has classified the green turtle as "endangered" due to an "observed, estimated, inferred or suspected reduction of at least 50% over the last 10 years or three generations, whichever is longer," based on: (a) direct observation; (b) an index of abundance appropriate for the species; and (c) actual or potential levels of exploitation. The genus *Chelonia* is composed of two taxonomic units at the population level, the eastern Pacific green turtle (referred to by some as "black turtle," *C. mydas agassizii*), which ranges (including nesting) from Baja California south to Peru and west to the Galapagos Islands, and the nominate *C. m. mydas* in the rest of the range (insular tropical Pacific, including Hawaii). Green turtles are distinguished from other sea turtles by their smooth carapace with four pairs of lateral scutes, a single pair of prefrontal scutes, and a lower jaw-edge that is coarsely serrated. Adult green turtles have a light to dark brown carapace, sometimes shaded with olive, and can exceed one meter in carapace length and 100 kilograms (kg) in body mass. Females nesting in Hawaii averaged 92 cm in straight carapace length (SCL), while at the Olimarao Atoll in Yap, females averaged 104 cm in curved carapace length (CCL) and approximately 140 kg. In the rookeries of Michoacán, Mexico, females averaged 82 cm in CCL, while males averaged 77 cm CCL (*in* NMFS and USFWS, 1998a). Green turtles are a circumglobal and highly migratory species, nesting mainly in tropical and subtropical regions. Based on growth rates observed in wild green turtles, skeletochronological studies, and capture-recapture studies, all in Hawaii, it is estimated that green turtles attain sexual maturity at an average age of at least 25 years (*in* Eckert, 1993). Growth rates and age to first reproduction in other north Pacific populations remain unquantified (Eckert, 1993). In Hawaii, green turtles lay up to six clutches of eggs per year (mean of 3.7), and clutches consist of about 100 eggs each. Females migrate to breed only once every two or possibly many more years. Eastern Pacific green turtles have reported nesting between two and six times during a season, laying a mean of between 65 and 86 eggs per clutch, depending on the area studied (Michoacan, Mexico and Playa Naranjo, Costa Rica (*in* Eckert, 1993 and NMFS and USFWS, 1998a). Under the IUCN, taxa are classified as endangered when they are not "critically endangered, but are facing a very high risk of extinction in the wild in the near future. The nonbreeding range of green turtles is generally tropical, and can extend approximately 500-800 miles from shore in certain regions (Eckert, 1993). They appear to prefer waters that usually remain around 20°C in the coldest month; for example, during warm spells (e.g., El Niño), green turtles may be found considerably north of their normal distribution. Stinson (1984) found green turtles to appear most frequently in U.S. coastal waters with temperatures exceeding 18°C. An east Pacific green turtle equipped with a satellite transmitter was tracked along the California coast and showed a distinct preference for waters with temperatures above 20°C (Eckert, unpublished data). Hawaiian green turtles monitored through satellite transmitters were found to travel more than 1,100 km from their nesting beach in the French Frigate Shoals, south and southwest against prevailing currents to numerous distant foraging grounds within the 2,400 kilometer span of the archipelago (Balazs, 1994; Balazs, *et al.*, 1994; Balazs and Ellis, 1996). Three green turtles outfitted with satellite tags on the Rose Atoll (the easternmost island at the Samoan Archipelago) traveled on a southwesterly course to Fiji, approximately 1,500 km distance (Balazs, *et al.*, 1994). #### Olive Ridlev Sea Turtles Although the olive ridley is regarded as the most abundant sea turtle in the world, olive ridley populations on the Pacific coast of Mexico are listed as endangered under the ESA; all other populations are listed as threatened. The olive ridley is categorized as endangered by the IUCN, where taxa so classified are considered to be facing a very high risk of extinction in the wild in the near future (IUCN Red List, 2000). They are the smallest living sea turtle, with an adult carapace length between 60 and 70 cm, and rarely weighing over 50 kg. They are olive or grayish green above, with a greenish white underpart, and adults are moderately sexually dimorphic (NMFS and USFWS, 1998d). Like leatherback turtles,
most olive ridley turtles lead a primarily pelagic existence (Plotkin et al., 1993), migrating throughout the Pacific, from their nesting grounds in Mexico and Central America to the north Pacific. While olive ridleys generally have a tropical range, with a distribution from Baja California, Mexico to Chile (Silva-Batiz, et al., 1996), individuals do occasionally venture north, some as far as the Gulf of Alaska (Hodge and Wing, 2000). Surprisingly little is known of their oceanic distribution and critical foraging areas, despite being the most populous of north Pacific sea turtles. The post-nesting migration routes of olive ridleys tracked via satellite from Costa Rica traversed thousands of kilometers of deep oceanic waters, ranging from Mexico to Peru, and more than 3,000 kilometers out into the central Pacific (Plotkin, et al., 1993). The turtles appeared to occupy a series of foraging areas geographically distributed over a very broad range within their oceanic habitat (Plotkin, et al., 1994). The species appears to forage throughout the eastern tropical Pacific Ocean, often in large groups, or flotillas, and are occasionally found entangled in scraps of net or other floating debris. In a three year study of communities associated with floating objects in the eastern tropical Pacific, Arenas and Hall (1992) found sea turtles, present in 15 percent of observations and suggested that flotsam may provide the turtles with food, shelter, and/or orientation cues in an otherwise featureless landscape. Olive ridleys comprised the vast majority (75%) of these sea turtle sightings. Small crabs, barnacles and other marine life often reside on the debris and likely serve as food attractants to turtles. Thus, it is possible that young turtles move offshore and occupy areas of surface current convergences to find food and shelter among aggregated floating objects until they are large enough to recruit to benthic feeding grounds of the adults. Olive ridleys feed on tunicates, salps, crustaceans, other invertebrates and small fish. Although they are generally thought to be surface feeders, olive ridleys have been caught in trawls at depths of 80-110 meters (NMFS and USFWS, 1998d), and a post-nesting female reportedly dove to a maximum depth of 290 meters. The average dive length for an adult female and adult male is reported to be 54.3 and 28.5 minutes, respectively (Plotkin, 1994, *in* Lutcavage and Lutz, 1997). Olive ridley turtles begin to aggregate near the nesting beach two months before the nesting season, and most mating is generally assumed to occur in the vicinity of the nesting beaches, although copulating pairs have been reported over 100 km from the nearest nesting beach. Olive ridleys are considered to reach sexual maturity between 8 and 10 years of age, and approximately 3 percent of the number of hatchlings recruit to the reproductive population (Marquez, 1982 and Marquez, 1992, *in* Salazar, *et al.*, 1998). The mean clutch size for females nesting on Mexican beaches is 105.3 eggs, in Costa Rica, clutch size averages between 100 and 107 eggs (*in* NMFS and USFWS, 1998d). Females generally lay 1.6 clutches of eggs per season by Mexico (Salazar, *et al.*, 1998) and two clutches of eggs per season in Costa Rica (Eckert, 1993). Data on the remigration intervals of olive ridleys in the eastern Pacific are scarce; however, in the western Pacific (Orissa, India), females showed an annual mean remigration interval of 1.1 years. Reproductive span in females of this area was shown to be up to 21 years (Pandav and Kar, 2000). Historically, an estimated 10 million olive ridleys inhabited the waters in the eastern Pacific off Mexico (Cliffton, et al., 1982 in NMFS and USFWS, 1998d). However, human-induced mortality led to declines in this population. Beginning in the 1960s, and lasting over the next 15 years, several million adult olive ridleys were harvested by Mexico for commercial trade with Europe and Japan. (NMFS and USFWS, 1998d). Although olive ridley meat is palatable, it was not widely sought after; its eggs, however, are considered a delicacy. Fisheries for olive ridley turtles were also established in Ecuador during the 1960s and 1970s to supply Europe with leather. (Green and Ortiz-Crespo, 1982). #### 3.4 Economic Issues The only economic issue that must be evaluated in the review of this action is how the issuance of the permit will allow longline fisherman, currently unable to fish in their traditional fishing grounds north of the equator, to fish in that area.